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ABSTRACT 

It is well known that for any n =>5 the boundary complex of the c y c l i c  

4-polytope C(n,4) is a neighborly combinatorial 3-sphere admitting a vertex 
transitive action of the dihedral group D, of order 2n. In this paper we present a 
similar series of neighborly combinatorial 3-manifolds with n => 9 vertices, each 
homeomorphic to the "3-dimensional Klein bottle". For n = 9 and n = 10 these 
examples have been observed, before by A. Altshuler and L. Steinberg. 
Moreover we give a computer-aided enumeration of all neighborly combinator- 
ial 3-manifolds with such a symmetry and with at most 19 vertices. It turns out 
that there are only four other types, one with 10, 15, 17, 19 vertices. We also 
d i s c u s s  the more general case of manifolds with cyclic automorphism group C,. 

1. Introduction and results 

A combinatorial 3-manifold M is a simplical complex such that for each vertex 
v @ M the link of v is a triangulated 2-sphere (cf. [16] ch. 23). It is called 
neighborly if it contains all possible edges, i.e. if for any pair vl, v2 of vertices the 
edge joining them belongs to the simplicial complex. This means that each vertex 
link contains all the other vertices. Neighborly combinatorial manifolds are of 
particular interest because of their relationship with the lower and the upper 
bound conjecture for combinatorial manifolds (cf. [17], [20]). The most classical 
examples are the boundary complexes of the cyclic polytopes discovered and 
studied by several authors (see [8]). In particular the boundary complex of any 
cyclic 4-polytope C(n,4) spanned by the n vertices 

( 2i~ 2i7r 4i7r 4/7r) 
v~= c o s - - , s i n  , c o s - -  s i n - -  i = l  . . . .  n, n_->5 

n n n ~ ' " 
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is a neighborly combinatorial 3-sphere S 3. According to Gale ' s evenness condition 

~see [8]) it contains exactly all the 3-dimensional faces v~v~+lvjvj÷l where the 

addition of indices is taken modulo n. In the following we denote the vertices 

simply by i instead of v~. Consequently the cyclic group C. of order n acts on the 

cyclic polytope (transitively on the set of vertices). In cycle notation we denote 

the generator of this group by T = (1 2 3 . . .  n). Moreover on the cyclic polytope 

there acts the reflection R = (1 n -  1) (2 n -  2) (3 n -  3) . . . .  Therefore the 

boundary complex of any cyclic 4-polytope is invariant under the action of the 

dihedral group D, of order 2n generated by T and R. (In fact this is true for 

cyclic polytopes of arbitrary even dimension; however, throughout this paper we 

want to restrict ourselves to the case of 3-manifolds.) For the related notion of a 

block design the invariance under T is called "cyclic design", the invariance 

under T and R is called "symmetric cyclic design" (cf. [10]). 

THEOREM 1 (well known). For any n >_ 5 there exists a neighborly combinator- 

ial 3-sphere with n vertices which is invariant under the vertex transitive action of 

the dihedral group D, : the boundary complex of the cyclic 4-polytope with n 

vertices. Notation: type I,. 

For up to 10 vertices all combinatorial types of neighborly 3-manifolds have 

been enumerated by several authors. According to [2], [3], [4], [6] these are the 

following: 

n =< 7: 1 type, 

n = 8: 4 types (1 with dihedral group Ds), 

n = 9: 51 types (2 with dihedral group D~), 

n = I0: 3677 types (5 with cyclic group C10, 3 with dihedral group D~0). 

The dihedral automorphism group has the largest order among all groups 

which occur for those types (however, for n = 10 there occurs a type N~°5 

invariant under the action of a nondihedral metacyclic group of order 20, see [2], 

remark 10). On the other hand an enumeration of all types with n = 11 vertices 

seems to be hopeless (cf. [21 Remark 5). For that reason we tried to give an 

enumeration of all neighborly combinatorial 3-manifolds with dihedral auto- 

morphism group D.. This work has been done by a computer program and 

carried out for n ==_ 19 (for details see below). A similar program gave an 

enumeration for n =< 15 under the weaker assumption of a cyclic automorphism 

group C, (see section 5 below). A particular topological type came out for any 
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n =< 19. It is the "3-dimensional Klein bottle" K 3 defined by K~: = S 2 x [0, 1]/ 

with ( x , 0 ) - f i x ,  1)where  r : S 2 ~  S 2 is the reflection at the equatorial plane of 

the 2-sphere S 2. It may be described also as the total space of the only nontrivial 

S-'-bundle over S 1 (see [18]). 

THEORZM 2. For any n >-_9 there exists a neighborly combinatorial 3- 

dimensional Klein bottle with n vertices which is invariant under the vertex 

transitive action of the dihedral group D,.  Notation : type II,. 

REMARK. (i) I19 and Illo are exactly the types N~I and N~°3, of [4] and [2] 
respectively. 

(ii) II, can be realized as a subcomplex of the cyclic polytope C(n,6).  

(iii) If the topology of the manifold is assumed to be fixed then for n _-< 19 and 

n #  10 this type II, is combinatorially unique according to the following 

theorem. 

THEOREM 3. For n <= 19 there are exactly (up to relabeling) the following 

neighborly combinatorial 3-manifolds invariant under the vertex transitive action 

of the dihedral group D, : 

(i) type I, for 5 <-_ n <= 19 (see Theorem I), 

(ii) type II, for 9 <= n <= 19 (see Theorem 2), 

(iii) four exceptional types ['[1o, III,5, IVy7, IVI,  with 10, 15, 17, 19 vertices 

respectively. 

REMARK. (i) The proof consists in applying the algorithm described in sec- 

tion 3. 

(ii) ii,,i is exactly type N~1~2~ of [2]. II,i, and 91o are homeomorphic but 

combinatorially different: according to [2] they are distinguished by the deter- 

minant of their edge-valence matrix. III15 is a highly symmetrical triangulation of 

the 3-dimensional torus which is closely related to the rhombidodecahedral 
tessellation of euclidean 3-space. It has been discussed in detail in the previous 

paper [14]. IV17 and IV19 are both nonorientable. They are homeomorphic to 

each other but they do not belong to an infinite series like II,, i.e. there is no 
corresponding type IV21, IV23, etc. 

However,  there is an infinite series of manifolds-with-boundary related to IV j7 

and IVy,. For the notion of a combinatorial 3-manifolds-with-boundary it is 

required that the link of each vertex is either a triangulated 2-sphere or 

triangulated 2-disc. Examples of 3-manifolds-with-boundary are the 3-ball and 

the solid torus which is a product of a 2-disc with a circle (cf. [19]). 

THEOREM 4. For any n >-_ 7 there exists a neighborly combinatorial solid toms 
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with n vertices which is invariant under the vertex transitive action of the dihedral 

group Dn. It may be chosen to be a subcomplex of the type In. Notation : type I 'n. 

THEOREM 5. (i) For any odd n >- 11 there exists a nonorientable neighborly 

combinatorial 3-mani[old-with-boundary which is invariant under the vertex 

transitive action of the dihedral group D,. Its topology may be described to be the 

product of a M6bius band and a circle. It may be chosen to be a subcomplex of the 

type II,. Notation: type II',. 

(ii) For any odd n >= 11 there exists a neighborly combinatorial 3-manifold- 

with-boundary of the same topological type as H~, which is invariant under the 

vertex transitive action of the dihedral group Dn. Notation : type IV',. 

REMARK. The types II'1~ and IV'~, are combinatorially equivalent, II', and IV', 

are combinatorially differenl for any odd n -> 13. IVI7 and IVI,, happen to be 

subcomplexes of IVL7 and IVy,,. Therefore the types IV'L,, IV~ and IVI,, can be 

closed up by adding one additional orbit leading to the manifolds (without 

boundary) II~. IV17 and IV>  This is impossible for the remaining types IV'~3. IVls 

and IV',, n _-> 21. 

THEOREM 6. The numbers of combinatorially different neighborly combinator- 

ial 3-manifolds with n <= 15 vertices which are invariant under the vertex transitive 

action of the cyclic group C, are as follows: 

n =< 8: 1 type (with dihedral'group D,,), 

n = 9: 2 types (both dihedral), 

n = 10: 5 types (3 dihedral), 

n = 11: 4 types (2 dihedral), 

n = 12: 10 types (2 dihedral), 

n = 13: 8 types (2 dihedral), 

n = 14: 22 types (2 dihedral), 

n = 15: 18 types (3 dihedral). 

A complete list of all these types will be given below in section 5. 

2. Proof of Theorem 2: Spherical modifications of cyclic polytopes 

By Gale's evenness condition the boundary complex of the cyclic polytope 

C(n,4) is given by the following generating tetrahedra, 
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0, 3 0134 0,45 0,56 01 

where we denote the vertices by the integers modulo n. Each tetrahedron 

generates an orbit under the action of T = (0 1 2 3 . . .  n - 1). Each such orbit is 

also invariant under the action of R. The word "'orbit" here is motivated by the 

corresponding notion in the topological literature: group action on a topological 

space. In the combinatorial literature also the notion of "difference cycle" is 

used (cf. [10]). 

The numbers f~ of /-dimensional simplices are as follows: 

f,,=n, f,= = ~ ( n - 1 ) ,  f~=n(n-3) ,  f 3 = 5 ( n - 3  ). 

It is well known that this complex is a neighborly combinatorial 3-sphere for any 

n ->_ 5. This leads to Theorem 1 which occurs in this paper only for completeness. 

We denote this combinatorial type by I, because it is the first example which has 

been found (cf. [8] for the history of the cyclic polytopes). Figure 1 shows the 

/ 
/ 

/ 

Fig. I. 
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Schlegel diagram of the link of the vertex 0 in I, (which is nothing but the 

boundary of' the cyclic 3-polytope with n - 1 vertices). The notation - 1 instead 

of n - 1, etc., is motivated by the symmetry R which here appears just as change 

of sign. 

PROOF OF THEOREM 2. The series II, for n => 9 is simply given by a slight 

modification of Io. This is called "spherical modification" or "surgery" in the 

topological literature (cutting out a manifold with boundary and replacing it by 

another one with the same boundary). We replace in I, the three orbits of 

0123 0134 0145 

by the three orbits of 

0135 0245 0235. 

We observe that for n -> 11 !L)oth are 3-manifolds with the common boundary 

which is the torus given by the orbits of the triangles 015 and 045. Therefore II, 

is given by the following ger~erating tetrahedra: 

0 1 3 5 0 2 4 5 0 : 2 3 5 0 1 5 6 0 1 6 7 " " 0 1 1 2 ] [ 2 ] + 1 .  

This is in fact a neighborly combinatorial 3-manifold as follows from Fig. 2, 

which shows the Schlegel diagram of the link of the vertex 0 in II, : observe the 

modification leading from Fig. 1 to Fig. 2. 

So far the construction of II, is complete. The required automorphism group 

is clear by construction. Furthermore by construction II, it may be considered to 

be a subcomplex of the cyclic polytope C(n, 6) because the major part is already 

a part of C(n,4) and the three orbits of 0135 0245 and 0235 are contained in the 

orbit of 012345 which is part of C(n, 6) by Gale's evenness condition. This is best 

possible because no nonorientable 3-manifold can be a subcomplex of the 

boundary of any 5-polytope. We show the nonorientability by contradiction. 

Suppose that II, is orientable and assume that 0135 is an oriented tetrahedron: 

Then we get necessarily 2035 and 0245. The square of T-'  necessarily preserves 

the orientation (if it exists) and carries 0245 to the oriented tetrahedron ( - 2)023. 

Now the triangle 023 occurs twice with the same orientation, a contradiction. 

It remains to determine the topological type of II,.  This has already been done 

in [11] for II9, and in [2] it is n-tentioned that IL and IIz0 have the same topological 

type. For n ==_ 11 the spherical! modification above leads to a decomposition ol II,  

into two manifolds with common boundary: the three orbits of 0135 0245 0235 
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and the orbits of 

It is easy to see that the orbits of 0123 0134 0145 form a solid torus (i.e. a 

3-manifold of the topological type of the product of a 2-disc with a circle) and 

that similarly its complement in I, forms a solid torus (Hopf decomposition of 

the 3-sphere). 

We illustrate here the method of collapsing which will be used throughout this 

paper (for basic facts compare [7]). Let us consider the three orbits of 0123 0134 

0145. Here the orbit of 0145 collapses onto the two others (i.e. each single 

tetrahedron in the orbits does), then the orbit of 0134 collapses onto the orbit of 

0123 which collapses on the orbit of the triangle 012 and finally on the orbit of 

the edge 01, the latter forming a polygonal circle. Therefore its homotopy type is 

that of a circle, its boundary is easily recognized to be a torus. Therefore the 

three orbits of 0123 0134 0145 form a solid torus for n ~ 11. The same argument 

shows that the other orbits in I,  form a solid torus. 
/ 

/ 

/ -8  

/ 
Fig. 2. 
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Now we are going to apply this method to the three orbits of 0135 0245 0235. 

As shown above this is for n ->_ 11 a nonorientable manifold whose boundary is 

the same torus given by the orbits of 015 and 045. Now the orbits of 0135 and 

0245 together collapse onto the last orbit (see Fig. 3) which collapses onto the 

two orbits of 025 and 035 forming a toms, the "middle torus". The projection 

from the boundary torus onto this middle torus is a twofold covering. Figure 4 

shows a "window" of this covering in two steps. 

Therefore the manifold given by the tree orbits of 0135 0245 and 0235 is 

topologically the total space of a nontriviaI line bundle over this middle torus. 

These line bundles are classified by the first homology group of the torus with 

integer coefficients mod 2. Therefore there are 4 different such bundles. By 

symmetry arguments there are only two different total spaces: The product of a 

cylinder and a circle for the trivial bundle, the product of a M6bius band and a 

circle for the three nontrivial bundles. 

We have seen that II,  consists of two manifolds-with-boundary: a solid torus 

(call it MI) and a product of a M6bius band with a circle (call it M~). The 

fundamental group of M, is free with one generator a, the fundamental group of 

M2 is free abelian with two generators b and c where b corresponds to the circle 

factor and c corresponds to the M6bius band factor. Then the fundamental 

group of the boundary torus will be free abelian with the two generators b and 

2c. It is not hard to see that a and 2c both can be represented by the same 

polygon in the boundary torus. The other generator b is homotopic to zero in M, 

and does therefore not occur in II, : The fundamental group of II,  is free with 

1 

6 

I 

Fig. 3. 

| 1  

10  

4 triangles of the 
boundary torus 

5 10  

after collapsing of 
0135 and 1356 

Fig. 4. 

1 6 11 

0 5 lO 

8 triangles of the 
middle torus 
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one generator. Therefore up to isotopy the identification of M~ and M2 along the 

common boundary is as in the following standard model for this situation: 

Consider the 3-dimensional Klein bottle K3:=S2x[O,I]/~ where ( x , 0 ) -  

(rx, 1), r being the reflection at the equatorial plane of S "~. In K 3 there sits the 

equatorial torus S ~ x [ 0 , 1 ] / -  where r restricts to the identity. A tubular 

neighborhood of this torus in K ~ is the total space of a nontrivial line bundle over 

this torus. This corresponds to the part M_~. The generators b and c correspond 

to the first and the second factor of the equatorial torus respectively. The 

complement of this tubular neighborhood in K 3 is a solid torus and corresponds 

to M~. This completes the proof that the underlying space of the simplicial 

complex II,  is homeomorphic to the 3-dimensional Klein bottle. 

REMARK. In terms of piecewise linear Morse theory (cf. [5] [15]) the natural 

labeling of the vertices 0, 1, 2 . . . . .  n - 1 induces a PL-Morse-function with only 4 

critical points: minimum 0, maximum n - 1 and two saddle points 3 and n - 3.. 

The middle level ( n -  1)/2 decomposes II, into two solid Klein bottles, one 

below, one above this level. 

3. Proof of Theorems 3 and 6: The enumeration algorithm 

In this section we describe an algorithm for the enumeration of all neighborly 

combinatorial 3-manifolds with the prescribed kind of automorphism group 

'(cyclic or dihedral). A similar algorithm has been used in a previous paper by the 

authors (see [13]): It puts together tetrahedra and checks certain necessary 

conditions. In the case to be discussed here the algorithm first enumerates all 

orbits of tetrahedra under the given group action and then puts together orbits of 

tetrahedra. 

3.1. The Enumeration of all Orbits of Tetrahedra 

We regard the vertices to be the elements of the group Z,  of integers'modulo 

n. On this set there acts the cyclic group C, by T = (01 2 3 . - .  n - 1) and the 

dihedral group D,  by T and R = ( l n - 1 ) ( 2 n - 2 ) ( 3 n - 3 )  . . . .  Now all 

tetrahedra ( =  unordered 4-tuples of elements of Z , )  are divided into equival- 

ence classes (orbits) under the action of T or T and R respectively. Note that the 

action of T appears as the translation x ,~ x + 1 and the action of R as the 

reflection x ~ - x  in Z,.  In the literature those orbits are also called "4- 

difference-cycles over Z , "  (cf. [10]). Each orbit can be represented by the 

minimal tetrahedron in the lexicographical order,  e.g. the orbit of 1245 in the 

case n = 9 is represented by 0134. Because the tetrahedra will be put together 
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along triangles it is useful to calculate similarly the orbits of triangles ( =  

unordered triples of elements of Z~) which appear as faces of an orbit of 

tetrahedra (they are also called "Heffter triples" in the literature). As an 

example the tetrahedron 0123 contains the triangles 012, 013, 023, 123 which 

belong to three different T-orbits 012, 013, 01 ( n -  2). 

In a combinatorial 3-manifold no triangle can be a face of three or more 

different tetrahedra. Therefore if it happens that the orbit of a triangle occurs 

three or more times in the orbit of a tetrahedron then we have to erase this orbit 

from the list of all orbits of tetrahedra. 

3.2. The Building Algorit~m 

This algorithm uses two different kinds of higher data structures: 

1. The list of all equivalence classes of 4-tuples as described in 3.1 above. 

2. A so-called complex which consists of a list of equivalence classes (orbits) 

of 4-tuples together with a list of the equivalence classes (Heffter triples) of 

triangles which occur in the complex once ("free" triangle) or twice ("closed" 

triangle). 

A complex is called closed if all of its triangles are closed in the sense that they 

occur twice each. The following important parameters are used: n is the actual 

number of classes in the complex, p is the actual pointer on the list of classes 

pointing to the most recently checked class. Both parameters are zero at the 

beginning. The main part of the program is represented by the so-called 

Nassi-Shneiderman diagram (Table 1). From this description it should be clear 

that the algorithm will find all possible closed 3-complexes which by construction 

are invariant under the prescribed group action. Furthermore it has to be 

checked if such a complex contains all possible edges (neighborliness) which is a 

purely combinatorial condition. Finally one has to check if it is a combinatorial 

manifold, i.e. if the vertex link is a combinatorial 2-sphere or not. This completes 

the enumeration of all such combinatorial 3-manifolds. 

It remains to check which of them are combinatorially different. Basically 

every permutation of the n vertices applied to a complex leads to an isomorphic 

one. Some of those permutations will even be compatible with the group action, 

i.e. they will preserve the orbits. The following lemma says that these are exactly 

the affine transformations ol Z,.  

LEMMA. Let P be a permutation of the n elements of Z.. Assume that for each 
m E Z,,  PTmP -1 is some power of T. Then P is an affine transformation of the 

form P(x ) = ax + b, a, b,x E Z , ,  a being a unit, where b = P(O), a = PTp-I(O). 
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TABLE l. 
The Nassi-Shneiderman Diagram 

Classification 
n:=0, p:=0 

p less than size of the list or n > 0? 

p less than size of the list? 

p : = p + l  

does simplex p fit the complex? 

yes 

add the simplex number p 
n: = n + 1, push p 

yes 

output of the complex ] 

1 

yes 

remove the simplex number p 
n:= n - l ,  popp 

PROOF. First of all if P T P  -1 = T k for some k then necessarily PTP-I(O) = k. 

Consequent ly  P T " P - I = ( P T P  ~ ) ' ~ = T  km and for  every  x UZn ,  P ( x ) =  

P(TX(O)) = T k x ( e ( o ) ) =  kx  + P(O). 

REMARKS. (i) k must  be a unit in the ring Z .  because otherwise P cannot  be a 

permuta t ion .  

(ii) The  same holds if we formula te  the assumpt ion for e lements  of the 

dihedral  g roup  instead of the cyclic g roup  consisting of all powers  of T. In this 

case the reflection R appears  as the t ransformat ion  x ~ - x .  

(iii) Usually the multiplicative g roup  of all units in the ring Z .  is deno ted  by 

Z*. There  is a natural  action of  Z* on Z.  and on all orbits of  tuples: 

( a , [x ] )  ,'~ [ax]. If one likes there is an exact sequence 

0--> Z.  ~ A (1, Z , ) ~  Z*--~ 1 
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where A(1 ,Z, )  denotes the affine group in one dimension over Z,. It is well 

known from elementary algebraic number theory that the order of Z*, is just the 

Eulerian 4~-function 

(rn,n)=l 

Consequently the algorithm described above will find for each such combinator- 

ial 3-manifold also all 3-manifolds equivalent under this action of Z*. It might 
happen that some manifolds are invariant under some elements of Z*. For 

example, the type III~5 is invariant under the action of the full affine group 

A(1,Z,5) (see [14]). 

3.3. The Result 

The combinatorially different neighborly 3-manifolds with at most 19 vertices 

admitting a vertex transitive action of the dihedral group have been found to be 

the following (each type is given by the list of generators of its T-orbits): 

0  , 0 3 014 0  60 67 

0 3 ,02350 4 0  601 7 01r21[ 1+  

n = 10: type H~o 0136 0138 0156 0158 

n = 1 5 :  type III15 0137 01311 0157 015 13 01911 019 13 

n--17:  type IV,7 0134 0145 0156 01310016120181001815 

n = 19: type IVy9 0134 0145 0156 0167 013 11 017 13 019 11 019 17. 

REMARK. Each tetrahedron contains two subsequent vertices i i + 1. Accord- 

ing to Gale's evenness condition each of the combinatorial manifolds above 

may be regarded as a subcomplex of the cyclic polytope C(n,6). For the 

nonorientable types II,, ILo.. IVy7, IVy9 this embeddability into a simplicial 

5-sphere (or euclidean 5-space) is best possible: no embedding can exist into the 

4-sphere (or 4-space). For the type IIL5 we don't know if this can be realized in 

the boundary complex of any 5-polytope. 

4. Proof of Theorems 4 and 5: The case of manifolds-with-boundary 

To obtain the type I'. one simply has to remove the orbit of 0123 from I.. The 

boundary of this orbit (and therefore of its complement in I .)  is the torus given 

by the orbits of the triangles 0 [3 and 023. These tori have been observed already 
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by A. Altshuler (see [1]). As in section 2 above it is easily seen that the orbit of 

0123 forms a solid torus, just as its complement I ' .  I', is also neighborly because 

no edges are lost by removing the orbit of 0123. This proves Theorem 4. 

Note that for odd n = 2k + 1 one also could remove the orbit of 01k k + 1 

instead of 0123. The resulting combinatorial manifolds-with-boundary are 

combinatorially equivalent. 

Similarly for odd n = 2k + 1 we define II', by removing the orbit of 01k k + 1 

from II,.  Topologically we remove a solid torus. It is easy to see that II', collapses 

onto the three orbits of 0135 0245 0235 where the topology of the boundary torus 

remains unchanged. This implies that II" is homeomorphic  to the collection of 

those three orbits. In the proof of Theorem 2 above we have already seen that 

the latter is homeomorphic  to the product of a M6bius band and a circle. This 

proves part (i) of Theorem 5. 

The construction of IV', for n = 2k + 1 is motivated by IV17 and IVl~ (see 

section 3.3). We define IV', to be the collection of the orbits of 0134 0145 0156 . . .  

01 k - 3 k - 2 013 - (k - 1) 01 k ( -  2) 01 k - (k - 1) where we wrote - 2 instead 

of n - 2 ,  etc. The link of the vertex 0 is the triangulated disc shown in Fig. 5. 

Therefore  IV', is in fact a combinatorial 3-manifold-with-boundary. 

From Fig. 5 it can be seen that IV', is constructed by a "spherical modification" 

f r o m  1,,'-4 similarly as II ,  is constructed from I,. Therefore  the topology of IV', 

can be understood following the pattern of the proof of Theorem 2. All that has 

to be shown is that the collection of the three orbits of 01 k - ( k - 1 )  

013 - ( k  - 1 )  and 01k - 2  is topologically the product of a M6bius band with a 

circle. Just as was used in the proof of Theorem 2 we have the collapsing of the 

...... Fig. 5. 
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orbits of 01k - 2  and 0 1 3 -  ( k - 1 )  together onto the orbit of 01k - ( k - l )  

which collapses onto the torus formed by the orbits of Ok - (k - 1) and Ok - 2, 

the middle torus. The projection from the boundary torus onto this middle torus 

is a double covering just as shown in Fig. 4. We only have to change the labeling 

to get Fig. 6, showing a "window" of this covering. 

Now as in the proof of Theorem 2 it follows that IV" is homeomorphic  to the 

product of a M6bius band and a circle. This proves part (ii) of Theorem 5. 

Now we are going to prove the remarks after Theorem 5. 

The two types IIh given by the orbits of 0135 0245 0235 and IV'~ given by 0137 

0159 0157 are combinatorially equivalent by applying to the first one the 

permutation x ~ 2 x  modulo l l .  

For odd n --- 13, II', and IV,', are combinatorially inequivalent because already 

their links of vertices are different: The vertex link in II', contains four vertices of 

valence 6 (i.e. 6 edges meeting)whereas the vertex link in IV" contains only two 

vertices of valence 6 (see Figs. 2 and 5). 

The type IV~k+~ consists of k - 2  orbits, i.e. (2k + 1 ) ( k - 2 )  tetrahedra. A 

neighborly combinatorial 3-manifold without boundary having n = 2k + 1 ver- 

tices has necessarily n(n-3)/2 = (2k + 1 ) ( k -  1) tetrahedra. This means that 

there is only one chance to close up IV" to get a neighborly combinatorial 

manifold IV, without boundary and with the same kind of symmetry: try to add 

exactly one T-orbit which in addition has to be invariant under R. Now the 

boundary of IV" in the link of 0 appears as the hexagon shown in Fig. 7. 

4 triangles of the 
boundary torus 

- 2  0 

1 I 

after collapsing of 
O1 k(-2) and013-(k - 1) 

Fig. 6. 

k - 3  

- ( k - 3 )  

Fig. 7. 

- 2  0 2 

- !  ! 

8 triangles of the 
middle torus 
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Each T-orbit  of tetrahedra gives four triangles in the link of 0. Let us look for 

all possibilities to fill this hexagon by four triangles where k => 5 is an arbitrary 

integer: 

Ist case: Introduce the tetrahedron 01 k - 3 k - 2. By T-action we get 

0 1 k - 3 k - 2  

- I  0 k - 4 k - 3  

- ( k - 3 )  - ( k - 4 )  0 1 
- ( k - 2 )  - ( k - 3 )  - 1  0 

Therefore  -+ (k - 4) both must be among the vertices -+ 1, + (k - 2), _+ (k - 3) 

which is possible only for k = 5. 

2nd case: 

0 k - 3  k - 2  - 1  

- ( k - 3 )  0 1 - ( k  - 2 )  

- ( k - 2 ) - I  0 - ( k - l )  

1 k - 2 k - 1  0 

This implies that _+ (k - 1) both must be among -+ 1, _+ (k - 2), -+ (k - 3) which 

is impossible. 

3rd case: 

0 k - 3  - ( k - 2 )  - 1  
- ( k - 3 )  0 6 - ( k - 2 )  

k - 2  - 6  0 k - 3  

1 k - 2  - ( k  - 3 )  0 

This implies that -+ 6 both must be among -+ 1, -+ ( k -  2), _+ ( k -  3) which is 

possible exactly for k = 8 and k = 9. 

It follows that IV" can be closed up by one additional orbit at most for n = 11, 

n = 17 and n = 19. Vice versa, in these three cases it is possible: IVh, IVI7 and 

IV~t9 are subcomplexes of I I , ,  IVy7 and IVl9 respectively. 

Finally we discuss roughly the topology of IV17 and IVI~. We have seen above 

that IV'17 and IVt19 both are homeomorphic to the types II',. To close IVY7 and IV~19 

we put in the orbit of the tetrahedra 0156 or 0167 respectively, each forming a 

solid torus. This means that IVl7 and IVy9 both are spherical modifications of the 

3-dimensional Klein bottle whece each time the same kind of modification is 

used. In terms of the generators a, b, c in section 2 it seems that here a is 
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homotopic to b and 2c is homotopic to zero. This implies that the fundamental 

group is isomorphic to ZOZ2. The PL-function induced by the standard 

ordering 0, 1 , 2 , . . . ,  16 or 0, ], 2 , . . . ,  18 has in fact only 6 critical points. 

5. Appendix: Neighborly combinatorial 3-manifolds with cyclic automor- 
phism group 

In this last section we want to discuss the analogous problem when the 

dihedral group D° is replaced by the cyclic group Cn, i.e. we assume that the 

cyclic group generated by T acts transitively on the n vertices. In this case the 

same algorithm can be applied (cf. section 3). The number of such combinatorial 

manifolds is much larger than that in the case of the dihedral group. This makes 

it difficult to classify the topological types of all of them. Before giving the list of 

the combinatorial types let us mention at least one infinite series of such 

manifolds (similarly to Theorem 2): 
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TABLE 2. 
Complete List of Combinatorial Types of Neighborly 3-Manifolds Admitting a Vertex Transitive 

Action of the Cyclic Group C. 

n Type Orientation List of Orbits Remarks 

_-< 8 I. yes 

9 I,, yes (/123 0134 0145 
IL no 0135 0235 0245 N~, in [4] 

10 

11 

12 

13 

1~ yes 0123 0134 0145 0156 
11.. no 0135 0235 (/245 0156 N~,t in [2] 
H., no 0136 0138 0156 0158 N'~'~ in [2] 
1., yes 0124 0125 0135 0257 N~74 in [2] 
2~o yes 0125 0126 0146 0257 N ~ .  in [2] 

ll~ yes 0123 0134 0145 0156 
I I .  no 0135 0235 0245 0156 
1~ yes 0123 0137 0147 0149 
2. no 0124 0128 0135 0145 

I~ yes 0123 0134 0145 0156 0167 
II~: no 0135 0235 0245 0156 0167 
1~2 yes 0123 0137 0157 0268 01510 
2~2 yes 0125 0128 0145 0179 0268 
3~2 no 0134 0139 0146 0167 017 10 
4t~ no 0134 0139 0147 0167 016 10 
5~ yes 0136 0137 0167 0246 0258 
6~z yes 0136 013 10 0146 01410 0268 
7~ yes 0137 0139 0147 0149 0268 
8~: yes 0137 0139 0167 0169 0246 

I~3 yes 0123 0134 0145 0156 0167 
IL~ no 0135 0235 0245 0156 0167 
1~3 no 0123 0137 0157 01511 0268 
2~ no 0123 0137 0159 01511 0179 
3~3 no 0123 0138 0156 01511 0169 
4t3 yes 0124 0125 0138 0158 0247 
5~ no 0124 0129 0135 0146 0156 
6t~ no 0125 0126 0146 0157 0268 

14 It~ yes 0123 0134 0145 0156 0167 0178 
II~4 no 0135 0235 0245 0156 0167 0178 

cf. Theorem 7 

cf. Theorem 7 

THEOREM 7. For each odd n >= 11 there exists a neighborly combinatorial 

3-dimensional Klein bottle with n vertices admitting a vertex transitive action of the 

cyclic group C. (but not of D.). 

SKETCH OF PROOF. Let n = 2k + 1. This manifold is defined to be the 

collection of the T-orbits of the following tetrahedra: 
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TABLE 2 (contd.) 

n Type Orientation List of Orbits Remarks 

114 yes 012:3 0 1 3 7  0157 015 12 0 2 7 9  0246 
2x4 yes 0123 0 1 3 7  0157 015 12 0 2 7 9  0268 
314 yes 012.3 ( t 137  0157 015 12 0279 026 10 
4,4 yes 0123 0137 017 12 0 2 7 9  02710 0246 
5~4 yes 0123 0137 017 12 0279 027 10 0268 
6~4 yes 0123 0 1 3 7  (11712 0279 (127 10 02610 
7~4 yes 0123 0 1 3 7  01510 015 12 0178 018 10 
8,4 yes 0123 0 1 3 8  0158 015 12 0369 037 10 
9 .  yes 0124 0 1 2 7  0 1 3 5  0 1 4 6  0 1 5 7  0279 
lot4 yes 0125 0 1 2 6  0 1 3 6  0 1 3 7  0147 037 10 
1114 yes 0125 0 1 2 6  0 1 4 6  0 2 5 7  0 2 7 9  0246 
12~ yes 0125 0 1 2 6  0 1 4 6  0 2 5 7  0 2 7 9  0268 
13~ yes 0125 ( t 1 2 6  0 1 4 6  ( t 2 5 7  0279 026 10 
14,4 no (/125 0 1 2 9  0 1 4 5  01810 019 11 0279 
15~4 no 0125 012 10 0 1 4 6  0 1 5 6  0 2 5 7  0279 
16~4 yes 0126 0 1 2 7  0 1 3 5  0137 024 11 0279 
1714 yes 0126 0 1 2 7  0 1 4 7  01412 015 12 037 10 
18,4 yes 0126 0127 015 I1 017 11 0 2 6 9  0279 
1914 no 0134 0 1 3 7  0145 015 12 0178 018 10 
20~ no 0134 0 1 3 8  0145 015 12 0178 017 10 

15 I~5 
II~5 
III~5 

[15 
2~s 
315 
415 
5z5 
6,5 
715 
8t5 
9t, 
10,5 
11~5 
12~, 
1315 
14~, 
151~ 

yes 0123 0 1 3 4  0 1 4 5  0 1 5 6  0 1 6 7  0178 
no 0135 0 2 3 5  0 2 4 5  0 1 5 6  0 1 6 7  0178 
yes 0137 01311 0 1 5 7  01513 01911 01913 
no 0123 0 1 3 4  0 1 4 9  0 1 6 7  01612 01710 
yes 0123 0 1 3 6  01613 0 2 5 8  03710 03711 
yes 0123 0 1 3 7  01411 014 13 01711 03610 
no 0123 0 1 3 7  0 1 5 7  01513 0 2 6 8  0279 
no 0123 0137 017 13 0259 025 11 02611 
no 0123 0 1 3 9  0 1 4 9  01410 01610 01613 
yes 0123 0 1 3 9  0159 015 13 02711 02811 
yes 0123 0 1 3 9  0169 016 13 03710 03711 
yes 0123 01311 0147 0t4 13 017 11 02610 
no 0123 01313 0 2 5 9  0 2 6 8  02612 02811 
no 0124 012 10 0 1 3 5  0 1 4 6  0 1 5 7  0167 
no 0124 01210 01310 0 1 4 9  0 2 4 9  02710 
no 0125 0 1 2 6  0 1 4 6  0 2 5 7  0 2 6 8  0279 
no 0126 0 1 2 7  0 1 3 7  0 1 3 8  0 1 5 8  03710 
no 0126 0 1 2 7  01513 01713 0 2 6 8  02811 

cf. [14] 

cf. Theorem 7 

O12k + 3  0 1 2 4 0 1 3 5 0 1 4 6 0 1 5 7  . . . 0 1 k - 2 k  O l k - l k .  

For k = 4 we get 0127 0124 0134 which is combinatorially equivalent to the type 

II9 above. For k = 5 we hawe 0128 0124 0135 0145 which is no longer invariant 

under the action of R. By construction for each k _-> 5 the resulting simplicial 

complex is invariant under the action of T (but not of R).  That it is in fact a 
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combinator ia l  3-manifold follows from Fig. 8, which shows the link of the vertex 

0. It also follows that  it is nonor ientable :  look at the triangles 12 k + 3 and 

1 - 1 k + 2 in the link of 0, both  belonging to the T-orbi t  of 012 k + 3. Therefore  

the T-act ion does not  preserve the or ientat ion of the te t rahedra.  Because the 

number  of vertices is odd the T-act ion must preserve a global or ientat ion if it 

exists, a contradict ion.  

A long  the pat tern  of the proof  of T he o re m  2 it can be seen that this type is also 

topological ly a 3-dimensional  Klein bottle. Again  the PL-funct ion induced by 

the s tandard labeling 0, 1,2 . . . . .  n - 1  will have only four  critical points. 

Now the complete  list of the combinator ia l  types of neighborly  3-manifolds 

admitt ing a vertex transitive action of the cyclic group C, is given in Table 2 

(each type is given by the list of  genera tors  of the T-orbits).  
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